Glucocorticoid receptor nitration leads to enhanced anti-inflammatory effects of novel steroid ligands.

نویسندگان

  • Mark J Paul-Clark
  • Fiorentina Roviezzo
  • Roderick J Flower
  • Giuseppe Cirino
  • Piero Del Soldato
  • Ian M Adcock
  • Mauro Perretti
چکیده

It has recently emerged that posttranslational modification of proteins via nitration of tyrosine residues can alter their function. In this study, we describe that specific nitration of the glucocorticoid receptor (GR) by NCX-1015, a novel NO-donating prednisolone derivative (prednisolone 21-[4'-(nitrooxymethyl)benzoate), results in an enhancement of GR-mediated events. Incubation of PBMC and U937 cells with 1-10 micro M NCX-1015 caused faster activation of GR as assessed by augmented 1) binding to [(3)H]dexamethasone, 2) dissociation from heat shock protein 90, and 3) nuclear translocation. PBMCs treated with NCX-1015 contained GR that had undergone tyrosine nitration. The chemistry facilitating the increase in steroid binding capacity observed with NCX-1015 is specific, because changing the position of the NO-donating group or ubiquitous nitration by addition of an NO donor was unable to mimic this event. In vivo treatment with NCX-1015 provoked GR nitration and faster heat shock protein 90 dissociation as assessed in peritoneal cells. Accordingly, NCX-1015, but not prednisolone or other derivatives, produced a rapid inhibition of the early neutrophil recruitment and mediator generation in a model of peritonitis. In conclusion, we report here for the first time that posttranslational modification of GR by this novel nitrosteroid is associated with its enhanced anti-inflammatory activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The glucocorticoid receptor in inflammatory processes: transrepression is not enough.

Glucocorticoids (GCs) are the most commonly used anti-inflammatory agents to treat inflammatory and immune diseases. However, steroid therapies are accompanied by severe side-effects during long-term treatment. The dogma that transrepression of genes, by tethering of the glucocorticoid receptor (GR) to DNA-bound pro-inflammatory transcription factors, is the main anti-inflammatory mechanism, is...

متن کامل

Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor?

Glucocorticoids (corticosteroids) are highly effective in combating inflammation in the context of a variety of diseases. However, clinical utility can be compromised by the development of side effects, many of which are attributed to the ability of the glucocorticoid receptor (GR) to induce the transcription of, or transactivate, certain genes. By contrast, the anti-inflammatory effects of glu...

متن کامل

The search for safer glucocorticoid receptor ligands.

Steroidal glucocorticoids are commonly used due to their powerful antiinflammatory activity. However, despite their excellent efficacy, severe side effects frequently limit the use of these drugs. The search for novel glucocorticoids with reduced side effects has been intensified by the discovery of new molecular details regarding the function of the glucocorticoid receptor. These new insights ...

متن کامل

Nuclear factor-kappa-B/steroid hormone receptor interactions as a functional basis of anti-inflammatory action of steroids in reproductive organs.

The transcription factor, nuclear factor-kappa-B (NF-kappa B), can be induced by pro-inflammatory cytokines and is important in immunological and inflammatory processes because it directs transcription of chemoattractants, cytokines (including the NF-kappa B-inducing cytokines themselves), cytokine receptors and cell adhesion molecules. We and others have recently found that NF-kappa B and the ...

متن کامل

Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists.

Glucocorticoids (GC) are the most common used anti-inflammatory and immunosuppressive drugs in the treatment of rheumatic and other inflammatory diseases. Their therapeutic effects are considered to be mediated by four different mechanisms of action: the classical genomic mechanism of action caused by the cytosolic glucocorticoid receptor (cGCR); secondary non-genomic effects which are also ini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 171 6  شماره 

صفحات  -

تاریخ انتشار 2003